Poly(A) elongation during Xenopus oocyte maturation is required for translational recruitment and is mediated by a short sequence element.

نویسندگان

  • L L McGrew
  • E Dworkin-Rastl
  • M B Dworkin
  • J D Richter
چکیده

Xenopus oocytes contain several mRNAs that are mobilized into polysomes only at the completion of meiosis (maturation) or at specific times following fertilization. To investigate the mechanisms that control translation during early development, we have focused on an mRNA, termed G10, that is recruited for translation during oocyte maturation. Coincident with its translation, the poly(A) tail of this message is elongated from approximately 90 to 200 adenylate residues. To identify the cis sequence that is required for this cytoplasmic adenylation and recruitment, we have synthesized wild-type and deletion mutant G10 mRNAs with SP6 polymerase. When injected into oocytes that subsequently were induced to mature with progesterone, wild-type G10 mRNA, but not mutant transcripts lacking a 50-base sequence in the 3'-untranslated region, was polyadenylated and recruited for translation. The 50-base sequence was sufficient to confer polyadenylation and translation when fused to globin mRNA, which does not normally undergo these processes during oocyte maturation. Further mutational analysis of this region revealed that a U-rich sequence 5' to the AAUAAA hexanucleotide nuclear polyadenylation signal, as well as the hexanucleotide itself, were both required for polyadenylation and translation. The 50-base cis element directs polyadenylation, but not translation per se, as a transcript that terminates with 3'-deoxyadenosine (cordycepin) is not recruited for translation. The available data suggest that the dynamic process of polyadenylation, and not the length of the poly(A) tail, is required for translational recruitment during oocyte maturation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Involvement of Xenopus Pumilio in the translational regulation that is specific to cyclin B1 mRNA during oocyte maturation

Protein synthesis of cyclin B by translational activation of the dormant mRNA stored in oocytes is required for normal progression of maturation. In this study, we investigated the involvement of Xenopus Pumilio (XPum), a cyclin B1 mRNA-binding protein, in the mRNA-specific translational activation. XPum exhibits high homology to mammalian counterparts, with amino acid identity close to 90%, ev...

متن کامل

Temporal regulation of the Xenopus FGF receptor in development: a translation inhibitory element in the 3' untranslated region.

Early frog embryogenesis depends on a maternal pool of mRNA to execute critical intercellular signalling events. FGF receptor-1, which is required for normal development, is stored as a stable, untranslated maternal mRNA transcript in the fully grown immature oocyte, but is translationally activated at meiotic maturation. We have identified a short cis-acting element in the FGF receptor 3' untr...

متن کامل

Poly(A) removal during oocyte maturation: a default reaction selectively prevented by specific sequences in the 3' UTR of certain maternal mRNAs.

Certain maternal mRNAs lose their poly(A) tails during early development and concomitantly become translationally inactive. In this report we analyze the mechanism of poly(A) removal during frog oocyte maturation by injecting short synthetic RNAs. We demonstrate that removal of poly(A) during oocyte maturation is a default reaction: In the absence of any specific sequence information, poly(A) i...

متن کامل

Multiple sequence elements and a maternal mRNA product control cdk2 RNA polyadenylation and translation during early Xenopus development.

Cytoplasmic poly(A) elongation is one mechanism that regulates translational recruitment of maternal mRNA in early development. In Xenopus laevis, poly(A) elongation is controlled by two cis elements in the 3' untranslated regions of responsive mRNAs: the hexanucleotide AAUAAA and a U-rich structure with the general sequence UUUUUAAU, which is referred to as the cytoplasmic polyadenylation elem...

متن کامل

Mechanism of degradation of CPEB during Xenopus oocyte maturation.

CPEB, a cytoplasmic polyadenylation element-binding protein, plays an important role in translational control of maternal mRNAs in early animal development. During Xenopus oocyte maturation, CPEB undergoes a Cdc2-mediated phosphorylation- and ubiquitin-dependent degradation that is required for proper entry into meiosis II. However, the precise mechanism of CPEB degradation, including the ident...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genes & development

دوره 3 6  شماره 

صفحات  -

تاریخ انتشار 1989